The PCB Board Heat Dissipation Techniques -2
5. The devices on the same printed board should be arranged as far as possible according to their calorific value and degree of heat dissipation. Devices with low calorific value or poor heat resistance (such as small signal transistors, small-scale integrated circuits, electrolytic capacitors, etc.) should be placed in the uppermost flow (at the entrance) of the cooling airflow, and the devices with large heat generation or good heat resistance (such as power transistors, large-scale integrated circuits, etc.) are placed at the most downstream of the cooling airflow.
6. In the horizontal direction, high-power devices are arranged as close to the edge of the printed board as possible to shorten the heat transfer path. In the vertical direction, high-power devices are arranged as close as possible to the top of the printed board to reduce the influence of the temperature of other devices when these devices are working.
7. The heat dissipation of the printed board in the equipment mainly relies on air flow, so the air flow path should be studied during the design, and the device or printed circuit board should be reasonably configured. When air flows, it always tends to flow in places with low resistance, so when configuring devices on a printed circuit board, avoid leaving a large airspace in a certain area. The configuration of multiple printed circuit boards in the whole machine should also pay attention to the same problem.
8. The temperature-sensitive device is best placed in the lowest temperature area (such as the bottom of the device). Never place it directly above the heating device. It is best to stagger multiple devices on the horizontal plane.
9. Arrange the components with the highest power consumption and the highest heat generation near the best position for heat dissipation. Do not place high-heating devices on the corners and peripheral edges of the printed board, unless a heat sink is arranged near it. When designing the power resistor, choose a larger device as much as possible, and make it have enough space for heat dissipation when adjusting the layout of the printed board.
10. Avoid the concentration of hot spots on the PCB, distribute the power evenly on the PCB board as much as possible, and keep the PCB surface temperature performance uniform and consistent. It is often difficult to achieve strict uniform distribution during the design process, but areas with too high power density must be avoided to prevent hot spots from affecting the normal operation of the entire circuit. If possible, it is necessary to analyze the thermal efficiency of the printed circuit. For example, the thermal efficiency index analysis software module added in some professional software can help designers optimize the circuit design.
XPCB Limited is a manufacturer specializing in the production of high-precision double-sided, multi-layer and impedance, blind buried vias, and thick copper circuit boards. The products cover HDI, thick copper, backplanes, rigid-flex combined, buried capacitance and buried resistance, Golden Finger and other kinds of circuit boards, which can meet the needs of customers for all kinds of products.
XPCB Limited is a premium PCB & PCBA manufacturer based in China.
We specialize in multilayer flexible circuits, rigid-flex PCB, HDI PCB, and Rogers PCB.
Quick-turn PCB prototyping is our specialty. Demanding project is our advantage.
Tel : +86-136-3163-3671
Fax : +86-755-2301 2705
Email : [email protected]
© 2024 - XPCB Limited All Right Reserve